
UO-LISP NEWSLETTER

t July 1985 Vol. 2 No. 3

Hard on the heels of the last late newsletter is this Summer
issue. We switch from programming with objects to customizing
the LSED screen editor by including the complete source code for
an EMACS style interface.

Feature: EMACS style Interface tor LSED

LSED is a completely user programmable editor . The system
provides the basic interface functions and the user configures
the system to perform in whatever manner desired. This can take
the form of rebinding the control character sequences to perform
different functions thus permitting the special keys on some
systems to operate correctly. Alternatively, the system can be
configured to look like some other editor. This is particularly
useful if you are used to something like Wordstar or Emacs.

The user's guide provides some simple examples of
key sequences for different terminal types. In this
we examine a complete rework of the editor to make it
the popular Emacs editor.

rebinding
exposition
look like

There are 4 undocumented functions that need to be examined
for this effort. We include them as a bonus to newsletter
subscribers.

1

(eFARM CHAR:inteqer KEYMAP:alist REPT:inteqer):tri-boolean
Type: EXPR.

eFARM calls the function associated with character CHAR
based on the current KEYMAP. KEYMAP is the association list
formed by the BIND function. REPT is the number of times
that the command should be repeated. If the command
succeeds, the value of the function OK is returned, if it
fails, the value of the function FAIL is returned and if
the command is to terminate LSED execution, the value of
TERM is returned (these are checked for by the OKP, FAILP
and TERMP functions). If CHAR is the first of a multiple
character command, more characters will be read by eFARM to
complete the command.

(eGET):inteqer
Type: EXPR.

eGET returns the next "raw" character from whatever input
is currently selected. This includes keyboard input, input
from a keyboard macro, and input from the file copy on the
screen. eGET should be used for any non-echoing input of
characters.

(eGETV N:inteqer):{list,tri-boolean}
Type: EXPR.

eGETV returns a list of characters for line N of the file
being edited. It does all appropriate swapping to and from
disk files and so on. It returns FAIL if there is no such
line in the file.

(eREAD MSG:strinq):list
Type: EXPR.

eREAD causes MSG to appear in the middle window and to
return a list of characters that the user types following
this prompt. eREAD should be called for any user input of
text information.

Emacs is more than a set of keybindings
There are many additional functions not bound to
are supported. The following is about 1/3 of the
functions in the Unix EMACS system. The following
very brief descriptions of functions and bindings
boxes.

and extensions.
any keys that
total available
text contains
that follow in

To assure that the file we are creating is compilable
without loading LSED and the screen driver, we declare global
variables we need from the basic system.

% Some globals
(GLOBAL'(

!#C
TERM!-MAXX
TERM!-MAXY
!#FY
!#FX
!#SX
!#SY

))

from LSED and the terminal drivers.

% The current key map.
% The last screen column.
% The top most row (starting at O).
% The current file line number.
% The rest of the current line.
% Current screen column number.
% current screen row number.

2

The first function allows us to have multiple keymaps: the
mapping between control key sequences and functions that do
things. This function would enable us to switch between the
Emacs mode and the regular LSED mode, invaluable during
debugging the package. We will call the standard key map
UO!-LISP and the EMACS set EMACS. We switch to the (currently
empty) EMACS key map before we· start rebinding keys.

% Keep around the current key map name.
(GLOBAL '(!#KEYMAPNAME))
(SETQ !#KEYMAPNAME 'UO!-LISP)

(DE USEKEYMAP (name)
% Switch to keymap name. The current command list is saved
% under its name (in !#KEYMAPNAME) and the new keymap is
% selected.

(PUT !#KEYMAPNAME 'LSEDKEYMAP !#C)
(SETQ !#C (GET name 'LSEDKEYMAP))
(SETQ ! #KEYMAPNAME name))

(USEKEYMAP 'EMACS) % Switch to emacs keymap.

We now work through the control keys, binding them to their
appropriate functions and defining new ones when there are no
equivalents in the base system. Recall that BIND has two
arguments, the first a list of the ASCII codes of the control
characters that trigger the evaluation of the second argument,
the name of a function. The first set, AA through AI (tab), are
bound to built-in functions. LSED doesn't work well with tabs,
so we use the tab key to evaluate expressions in the top window,
something that basic Emacs has no command for.

3

(BIND I (1) 'BOL) % "'A beginning of line
(BIND I (2) 'BACKC) % "B backwards character
(BIND I (3) 'QUITNS) % "C quit without saving
(BIND I (4) 'DELFC) % AD delete forward character
(BIND I (5) 'EOL) % ""E end of line
(BIND I (6) 'FORC) % AF forward character
(BIND I (8) 'DELBC) % AH backwards character
(BIND I (9) 'EEXP) % tab eval expression

The function bound to ""J (line feed) has no counterpart in
LSED. The line feed key operates like the return key except that
it automatically indents the next line the same number of blanks
that the previous line has. We accomplish this by retrieving the
current line of characters (using eGETV and the current line
number !#FY). We insert a carriage return and as many blanks as
we find in the previous line. The LBLS function counts the
number of blanks at the beginning of the line.

(BIND '(10) 'NLIND) % <lf> new line and indent.
(DE NLIND ()
% Terminate the current line, indent the next to where
% ever this one starts.

(PROG (cl)
(SETQ cl (eGETV !#FY))
(CINS 13)
(FOR (FROM i 1 (LBLS cl)) (DO (CINS 32)))
(RETURN (OK))))

(DE LBLS (1)
% Returns the number of blanks at the beginning of line 1.

(IF (NULL 1) THEN 0
ELSEIF (EQCAR 1 32) THEN (ADDl (LBLS (CDR 1)))
ELSE 0))

LSED normally irretrievably expunges deleted text from the
file. The kill to end of line command (connected to AK) places
deleted text in a special buffer for retrieval at a later date.
The command takes the part of the current text line following
the cursor, erases it from the screen, and appends it to the
kill buffer variable !#KBUFFER. The function also intercepts
subsequent "K's and causes their text to be added to the buffer.
The COPYONE function copies the first element of the tail of the
list as we destructively replace the CAR of this element with a

4

carraige return (13) character to terminate the line. This is an
important fact to remember when constructing LSED functions: all
lines must end with a carriage return.

(BIND '(11) 'KEOL) % AK kill to end of line
(GLOBAL I (! #KBUFFER))
(DE KEOL ()
% Delete the rest of the current line (do this by RPLACing).
% Append all this stuff to the !#KBUFFER buffer and keep
% doing so as long as AK is pressed. Note that if we are
% already at the end of the line, don't add to kill buffer,
% but just do a DELFC.

(PROG (c)
(SETQ !#KBUFFER NIL)

11 (IF (EQUAL !#FX '(13)) THEN (DELFC)
ELSE (SETQ !#KBUFFER (NCONC !#KBUFFER

(LIST (COPYONE !#FX))))
(CLEAR! -EOL)
(RPLACA 1 #FX 13)
(RPLACD !#FX NIL))

(SETQ c (eGET))
(IF (EQUAL c 11) THEN (GO 11)

ELSE (RETURN (eFARM c !#C NIL)))))

(DE COPYONE (1)
% Creates a new list 1 with the first element replaced.

(CONS (CAR 1) (CDR 1)))

The ENTER (or sometimes RETURN) key is bound to SELF. SELF
causes the character to be entered as is into the file, in this
case, causing a new line. The OPENL function (AO) is similar in
flavor except that it backs up before the inserted character
efectively opening a blank line (or with the remainder of the
current one) following the one the cursor is on.

(BIND '(12) 'REDRAW)
(BIND I (13) I SELF)
(BIND I (14) I DOWNL)
(BIND I (15) I OPENL)
(DE OPENL ()

% AL redraw screen
% AM new line
% AN next line
% AO open new line

% Insert a new line at the current position but leave the
% cursor where it is by backing up one character.

(CINS 13)
(BACKC))

5

The AQ key causes one more character to be read and inserted
as is into the input file. This is most useful for entering
control characters (such as AA into LISPTEX document files).

(BIND '(16) 'UPL)
(BIND I (1 7) I QC)
(DE QC ()
% Insert next character

(CINS (eGET)))

% AP previous line
% AQ quote next character

as is into the file.

The transpose character function TCHAR switches the next two
characters in the file if there are any and one of them is not a
carriage return. The cursor is left in its original position.
Note that CINS moves the cursor ahead

(BIND '(19) 'FIND)
(BIND '(20) 'TCHAR)
(DE TCHAR ()

% AS find forward
% AT transpose next 2 characters

% Read the next two characters, but quit if they
% are anything funny.

(PROG (cl c2)
(SETQ cl (CURC))
(IF (FAILP (FORC)) THEN (BACKC) (RETURN (FAIL)))
(SETQ c2 (CURC))
(IF (OR (EQN cl 13) (EQN c2 13)) THEN

(BACKC) (RETURN (FAIL)))
(BACKC) (DELFC) (DELFC)
(CINS c2) (CINS cl) (BACKC)
(RETURN (BACKC))))

When we implemented LSED we decided that the 80x24 character
screens common on most small computers were not sufficient to
support multiple window editing. Instead we adopted the strategy
of editing files simultaneously. The following commands
implement this facility and switching between the files. Note
that some of these commands require regular characters as
modifiers for AX (for example AXE). In this case we provide a
binding for both upper and lower case versions of the character.

6

(BIND I (21) 'REPT) % "U repeat next command
(BIND I (22) 'FORP) % "V forward page

(BIND '(24 3) 'QUITNS) % "X "C exit emacs
(BIND '(24 5) 'ECOM) % "X "E middle window eval
(BIND '(24 6) 'SAVEX) % "X "F save and exit
(BIND '(24 9) 'INSF) % "X "I insert file
(BIND '(24 17) 'SAVEF) % "X "Q save but no exit
(BIND '(24 22) 'VISITF) % "X "V visit file
(BIND '(24 26) 'SW) % "X "'Z shrink window
(BIND '(24 40) 'DKM) % "X (define keyboard macro
(BIND '(24 41) 'EKM) % "X) end of keyboard macro
(BIND '(24 69) 'KM) % "X E execute keyboard macro
(BIND '(24 101) 'KM)
(BIND '(24 78) 'OTHERF) % "X N other file
(BIND '(24 110) 'OTHERF)
(BIND '(24 80) 'OTHERF) % "X p other file
(BIND '(24 112) 'OTHERF)

The yank from kill buffer command copies the kill buffer
into the file at the current position. This feature is normally
used as in cut and paste editing or to move blocks of text
between two files. Since the kill buffer is not destroyed by the
command it can be inserted in more than one place or carried
between files. The FINALLY clause removes the final carriage
return ending the last line of the kill buffer.

(BIND '(25) 'YFKB) % "Y yank from kill buffer.
(DE YFKB ()
% Yank the stuff from the kill buffer and place in the file.
% This kludgy version updates the screen. This probably
% shouldn't happen unless the kill buffer is small. The kill
% buffer is not cleared.

(FOR (IN 1 !#KBUFFER)
(DO (FOR (IN c 1) (DO (CINS c))))
(FINALLY (DELBC))
(RETURNS (OK))))

The LTTOP function (bound to escape !) rolls the line the
cursor is on (!#SY on the screen) to the top of the screen. It
does this by rolling up the screen a line at a time until either
the end of file is encountered (ROLLUP returns FAIL) or the line
is at the top of the screen. Note that ROLLUP causes !#SY to be

incremented for every successful roll.

{BIND '{26) 'ROLLUP)
{BIND I { 2 7 3) I QUITNS)
{BIND '{27 27) 'ECOM)
{BIND '{27 33) 'LTTOP)
{DE LTTOP ()

% AZ roll screen up
% esc AC quit no save
% esc esc execute expression
% esc ! line to top of window

% Move the current line to the top of the window by
% scrolling.

{PROG ()
loop (IF (EQN !#SY TERM!-MAXY) THEN {RETURN (OK)))

{IF {FAILP (ROLLUP)) THEN (RETURN (FAIL)))
(GO loop)))

7

We now branch into some word processing functions, those
dealing with words, and sentences. For example, the esc A
command causes the cursor to skip over all non-printing
characters and then invert the case of all alphabetic characters
until some non-alphabetic character is encountered. The function
CINV inverts the case of a single character and returns NIL when
a non-alphabetic is encountered. CWINV scans over control
characters and blanks and then the word inverting case. Notice
that one must always check for FAILP of a cursor movement
operation. Not doing this will generally cause an infinite loop
when the cursor reaches end of file.

(BIND '(27 44) 'BOP) % esc, beginning of window
(BIND '(27 46) 'EOP) % esc. end of page
(BIND '(27 60) 'BOF) % esc <beginning of file
(BIND '(27 62) 'EOF) % esc >end of file
(BIND '(27 94) 'CWINV) % esc A case word invert
(DE CINV (c)
% Invert the case of character c. Returns NIL if c is not
% an alphabetic character.

(IF (AND (GEQ c 65) (LEQ c 90)) THEN (PLUS c 32)
EI.SEIF (AND (GEQ c 97) (LEQ c 122)) THEN (DIFFERENCE c 32)
ELSE NIL))

(DE CWINV ()
% Invert the case of a word.

(PROG (c)
11 (IF (GREATERP (CURC) 32) THEN (GO 12))

(IF (FAILP (FORC)) THEN (RETURN (FAIL))
ELSE (GO 11))

12 (IF (SETQ c (CINV (CURC))) THEN
(DELFC) (CINS c)
(IF (FAILP (FORC)) THEN (RETURN (FAIL))

ELSE (BACKC) (GO 12)))
(RETURN (OK))))

8

Moving backwards a word is a bit more difficult as the CURC
function alwyas returns the next character in the input line. As
before we bind both esc B and esc b to the command. This command
checks for failure of BACKC so that the result of backinq up to
the beginning ot file des not result in an infinite loop.

(BIND '(27 66) 'BW) % esc B backwards word
(BIND I (27 98) 'BW)
(DE BW ()
% Move backwards a word.

(PROG ()
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (BACKC)) THEN (GO 11)
ELSE (RETURN (FAIL))))

12 (IF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK))
ELSEIF (OKP (BACKC)) THEN (GO 12)

ELSE (RETURN (FAIL)))))

Delete forward word is a function in the same fashion.

9

Notice that many of the key bindings for commands operating on
words are bound to key sequences that are difficult to remember.
If you are in the habit of moving the cursor through words and
sentences you might consider binding these sequences to single
character codes or to the special function keys.

(BIND '(27 68) 'DFW) % esc D delete next word
(BIND I (27 100) 'DFW)
(DE DFW ()
% Delete all the blanks up to and including the next word.

(PROG ()
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (DELFC)) THEN (GO 11)
ELSE (RETURN (FAIL))))

12 (IF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK))
ELSEIF (OKP (DELFC)) THEN (GO 12)

ELSE (RETURN (FAIL)))))

Forward sentence and forward word are more of the same.

(BIND '(27 69) 'FS) % esc E forward sentence
(BIND I (27 101) 'FS)
(DE FS ()
% Move forward a sentence. A sentence is terminated with a
% . ! or ? and followed by a blank, EOF, or end of line.

(PROG ()
sl (IF (MEMBER (CURC) '(46 33 63)) THEN (GO s2)

ELSEIF (OKP (FORC)) THEN (GO sl)
ELSE (RETURN (FAIL)))

s2 (IF (FAILP (FORC)) THEN (RETURN {OK))
ELSEIF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK))
ELSE (GO sl))))

(BIND '(27 70) 'FW) % esc F forward word
(BIND I (27 102) 'FW)
(DE FW ()
% Move forward over blank characters and A-Z characters to
% the end of this word.

(PROG ()
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (FORC)) THEN (GO 11)
ELSE (RETURN (FAIL))))

12 (IF (NOT (MEMBER (CURC) '(32 13))) THEN
(IF (OKP (FORC)) THEN (GO 12)

ELSE (RETURN (FAIL))))
(RETURN (OK))))

10

Delete backward word is a bit different than just backing up
as we don't want to delete extra characters. Changing the case
of a word to lower is, of course, the analog of changing it to
upper case.

(BIND '(27 72) 'DBW) % esc H delete backward word
(BIND I (27 104) 'DBW)
(DE DBW ()
% Delete the blanks before and the previous word.

(PROG ()
11 (IF (MEMBER (CURC) '(32 13)) THEN

(DELFC)
(IF (OKP (BACKC)) THEN (GO 11)

ELSE (RETURN (FAIL))))
12 (IF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK)))

(DELFC)
(IF (OKP (BACKC)) THEN (GO 12)

ELSE (RETURN (FAIL)))))

(BIND '(27 76) 'CWL) % esc L case word lower
(BIND '(27 108) 'CWL)
(DE CWL ()
% Lower the case of the next word. Skip over any blanks in
% the way.

(PROG (c)
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (FORC)) THEN (GO 11) ELSE (RETURN (FAIL))))
12 (SETQ c (CURC))

(IF (AND (GEQ c 65) (LEQ c 90)) THEN
(DELFC) (CINS (PLUS c 32))

ELSEIF (MEMBER c '(32 13)) THEN (RETURN (OK))
ELSEIF (OKP (FORC)) THEN (GO 12)
ELSE (RETURN (OK)))))

The replace command requires collecting two strings and then
performing replacements throughout the rest of the file. We
first check the strings for the presence of AG. We use this
character to signal the command to be aborted. Once both strings
have been read, the FND function locates the first occurrence of
the string. If none are found the routine returns success or
failure based on the number of replacements performed. If an
occurrence of the !#ROLD string is found, its characters are
deleted and replaced with those of the new string and the search
and replacement continues.

(BIND '(27 82) 'RPL) % esc R replace
(BIND '(27 114) 'RPL)
(GLOBAL / (! #ROLD ! #RNEW))
(DE RPL {)
% Search for the string !#ROLD and replace it them with
% !#RNEW. Display the count of replacements in the
% message window.

(PROG (rplcnt)
(SETQ rplcnt 0)
(SETQ !#ROLD (eREAD "Search for:"))
(IF (MEMBER 7 !#ROLD) THEN (MSG '("aborted"))

(RETURN (FAIL)))
(SETQ !#RNEW (eREAD "Replace with:"))
(IF (MEMBER 7 !#RNEW) THEN (MSG '("aborted"))

(RETURN (FAIL)))
loop (IF (FAILP (FND !#ROLD)) THEN

(IF (ZEROP rplcnt) THEN (MSG '("no replacements"))
(RETURN (FAIL))

ELSE (MSG (LIST rplcnt "occurrences replaced"))
(RETURN (OK))))

(FOR (FROM i 1 (LENGTH !#RNEW)) (DO (DELBC)))
(FOR (IN c !#ROLD) (DO (CINS c)))
(SETQ rplcnt (ADDl rplcnt))
(GO loop)))

11

The final commands and functions are mere repetitions of
earlier ones.

(BIND '(27 85) 'CWU) % esc U case word upper.
(BIND I (27 117) I CWU)
(DE CWU ()
% Convert the next word to all upper case.

(PROG (c)
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (FORC)) THEN (GO 11) ELSE (RETURN (FAIL))))
12 (SETQ c (CURC))

(BIND
(BIND
(BIND
(BIND
{BIND
(BIND
(BIND

(IF (AND (GEQ c 96) (LEQ c 122)) THEN
(DELFC) (CINS (DIFFERENCE c 32)) (GO 12)

ELSEIF (MEMBER c '(32 13)) THEN (RETURN (OK))
ELSEIF (FAILP (FORC)) THEN (RETURN (FAIL))
ELSE (GO 12))))

'(27 86) 'BACKP) % esc v backwards page
'{27 118) 'BACKP)
'{27 88) 'ECOM) % esc x execute lisp in mini
'{27 120) 'ECOM)
'(27 90) 'ROLLDN) % esc z roll down
'(27 122) 'ROLLDN)
'(27 127) 'DELBC) % del delete backward character

12

To compile this batch of functions you must first load the
MACROS package. To run the system, you must first load LSED and
then the emacs file.

In the next Issue:

The next issue of the UO-LISP newsletter will present details of
the upcoming release of version 2.17 for Z80 CP/M systems, and
version 3.2 for IBM PC users. The feature article will be a rule
based expert system for generating musical scores.

